

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry



journal homepage: www.elsevier.com/locate/fluor

# $\alpha$ -Fluoroalkylation of carbonyl compounds mediated by a highly reactive alkyl-rhodium complex

Kazuyuki Sato, Satoshi Yamazoe, Yukiko Akashi, Tetsuya Hamano, Arisa Miyamoto, Shuhei Sugiyama, Atsushi Tarui, Masaaki Omote, Itsumaro Kumadaki, Akira Ando\*

Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan

#### ARTICLE INFO

Article history: Received 17 September 2009 Received in revised form 28 October 2009 Accepted 28 October 2009 Available online 5 November 2009

Keywords:  $\alpha$ -Fluoroalkylation Rhodium Silyl enol ether  $\alpha$ -Position

# ABSTRACT

Treatment of silyl enol ethers of various carbonyl compounds with Et<sub>2</sub>Zn and fluoroalkyl halides (R<sub>f</sub>-X) in the presence of RhCl(PPh<sub>3</sub>)<sub>3</sub> in DME gave the corresponding  $\alpha$ -R<sub>f</sub> carbonyl compounds. A highly reactive alkyl-rhodium complex which was derived from RhCl(PPh<sub>3</sub>)<sub>3</sub> and Et<sub>2</sub>Zn must be crucial in this reaction by accelerating the reaction rate and improving the yields dramatically. This reaction overcomes difficulties on the synthesis of  $\alpha$ -R<sub>f</sub> carbonyl compounds due to inverse polarization of R<sub>f</sub>-X. © 2009 Elsevier B.V. All rights reserved.

#### 1. Introduction

In the search for various medicinal candidates, a synthesis of designed proteins and/or peptides has become an important project. Fluorinated amino acids, especially  $\alpha$ -fluoroalkylated amino acids, are more stable than the corresponding nonfluorinated counterparts, and often used for these purposes [1]. However the effective syntheses of the fluorine-containing compounds, especially which have a fluoroalkyl (R<sub>f</sub>) group at the  $\alpha$ -position of a carbonyl group, are limited, and the development of their new synthetic methodology is highly desired [2–5]. The reason of the difficulty of the synthesis of  $\alpha$ -R<sub>f</sub> carbonyl compounds is attributed that the polarization of fluoroalkyl halides  $(R_f^{\delta-}-X^{\delta+})$  is opposite to that of the alkyl halides  $(R^{\delta+}-X^{\delta+})$  $X^{\delta_{-}}$ ), which makes it difficult to introduce  $R_{f}^{+}$  unit to enolates [6]. Although Mikami and co-workers have already reported  $\alpha$ trifluoromethylation of ketones by using Li, Ti, or Zn enolates assisted by Et<sub>3</sub>B/O<sub>2</sub>, their applications were limited to aliphatic ketones [7]. More recently, MacMillan and co-workers reported  $\alpha$ fluoroalkylation of aldehydes via the enamines by using a photoredox catalyst under the visible light [8]. This methodology is a very innovative reaction, but the reaction vessel was needed to place near luminous source at under a cool bath.

Recently, we reported an  $\alpha$ -trifluoromethylation of carbonyl compounds via trimethylsilyl enol ethers mediated by a highly

reactive alkyl-rhodium complex that was derived from RhCl(PPh<sub>3</sub>)<sub>3</sub> and Et<sub>2</sub>Zn (Scheme 1) [9]. The reaction smoothly proceeded and gave various  $\alpha$ -CF<sub>3</sub> carbonyl compounds in good yields. Thus, our reaction provided one of a breakthrough for the synthesis of them.

In this paper, we would like to report a further expansion of the scope of this reaction mediated by a highly reactive alkyl-rhodium complex to the synthesis of  $\alpha$ -fluoroalkylated carbonyl compounds.

# 2. Results and discussion

# 2.1. Synthesis of $\alpha$ -fluoroalkylated ketones

Based on the previous condition [9b], various  $R_f-X$  (1) and 1-(trimethylsiloxy)cyclohexene as a model compound of the silyl enol ethers were treated with  $Et_2Zn$  in the presence of  $RhCl(PPh_3)_3$ . The results are summarized in Table 1.

As shown in entries 1–3, perfluoroalkyl iodides (**1a–c**) gave the corresponding products in moderate to good yields, although a mixture of **4a** and **5a** was obtained in entry 1. The latter was assumed to be formed during the work-up. We confirmed this by treating the mixture with alumina (pH = 9.0–11.0) overnight before purification. As expected, the dehydrofluorination of **4a** occurred and only **5a** was obtained. Since the ratio of **4a** and **5a** varied depending on a slight differences in the work-up conditions, here is only shown the yield of **5a** after complete dehydrofluorination. Interestingly,  $C_{10}F_{21}$  group did not lead to the dehydro-

<sup>\*</sup> Corresponding author.

<sup>0022-1139/\$ –</sup> see front matter  $\circledcirc$  2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2009.10.012

#### Table 1

 $\alpha$ -Fluoroalkylation of cyclohexanone via its silyl enol ether.



| Entry | R <sub>f</sub> -X                | Temp. (°C) | Time (h) | Product | Yield (%) <sup>a</sup> |
|-------|----------------------------------|------------|----------|---------|------------------------|
| 1     | C <sub>4</sub> F <sub>9</sub> -1 | 0 to r.t.  | 24       | 5a      | 54 (66) <sup>b,c</sup> |
| 2     | $C_{10}F_{21}-I$                 | 0          | 2        | 4b      | 77                     |
| 3     | $C_6F_5-CF_2-I$                  | 0          | 23       | 4c      | 60                     |
| 4     | EtOOCCF <sub>2</sub> –Br         | 0          | 5        | 4d      | 70 (82) <sup>d</sup>   |
| 5     | EtOOCCF <sub>2</sub> -CI         | 0 to r.t.  | 24       | 4d      | n.r.                   |

<sup>a</sup> Isolated yield.

<sup>b</sup> <sup>19</sup>F NMR yield of the product (**5a**) calculated based on benzotrifluoride (BTF) as an internal standard.

<sup>c</sup> A mixture of the products was treated with alumina overnight.

<sup>d</sup> <sup>19</sup>F NMR yield calculated based on BTF as an internal standard.



Scheme 1.

fluorination contrary to the case of  $C_4F_9$  group (entry 2). It may be attributed to the inflexibility of  $C_{10}F_{21}$  group to form the rigid structure. On the other hand, ethyl bromodifluoroacetate (**1d**) gave the desired product (**4d**) in a good yield, while the reaction did not proceed with ethyl chlorodifluoroacetate (**1e**) even if the temperature was risen to room temperature (entries 4 and 5).

We have also reported that the  $\alpha$ -fluoroalkylation of ketones proceeded by heating in 1,4-dioxane only in the presence of RhCl(PPh<sub>3</sub>)<sub>3</sub> using the corresponding silyl enol ethers [10]. However the yield of products was low and dehydrofluorination also was observed in most cases because of the harsh condition in the previous report.

On the other hand, the addition of  $Et_2Zn$  improved the yield considerably, and suppressed the dehydrofluorination. The addition effect of  $Et_2Zn$  would be understood by our previous  $\alpha$ trifluoromethylation mechanism as shown in Fig. 1 [9b]. Namely, the oxidative addition of  $CF_3$ –I onto the highly reactive ethyl-



Fig. 1. Reaction mechanism of Rh-catalyzed α-trifluoromethylation.

rhodium complex (**6**), which was derived from RhCl(PPh<sub>3</sub>)<sub>3</sub> and Et<sub>2</sub>Zn, to form a Rh(III) complex (**7**) was followed by the coordination onto the  $\pi$ -bond of silyl enol ether (**2**). By subsequent insertion of the CF<sub>3</sub> unit into the olefin, another Rh(III) complex (**9**) was formed, which suffered from the reductive elimination to give the desired  $\alpha$ -CF<sub>3</sub> product (**3**) along with loss of ethyltrimethylsilane (TMS–Et) or trimethylsilane (TMS–H) and ethylene.

We believe that this  $\alpha$ -fluoroalkylation must proceed through the same mechanism. The oxidative addition of Cl–CF<sub>2</sub>COOEt onto the complex (**6**) would be difficult due to the hard C–Cl bond, and this is the reason of non-reactivity of the Cl-ester, as shown in entry 5 in Table 1.

## 2.2. Synthesis of various $\alpha$ -fluoroalkylated carbonyl compounds

Next, we examined the several substrates for  $\alpha$ -fluoroalkylation, and the results are summarized in Table 2. The yields and the reaction rates are well accorded with the order of electron density of the  $\pi$ -bond of the corresponding silyl enol ethers. Especially, the *N*,O-silyl ketene acetal from *N*-methyl-*N*-phenylisobutyramide reacted, though it has two methyl groups at the olefinic position that might cause a steric hindrance. In addition, it might be another reason of the low reactivity why there is less electron donation from nitrogen owing to the distortion by steric repulsion between TMS and amino groups. This result suggests that more electron rich silyl enol ethers would become to easily coordinate to the complex (**7**). Furthermore, it is understandable that the size of R<sub>f</sub>–X also affects the yield.

On the other hand, the dehydrofluorinated product (**5a**) was obtained in a considerable yield in the reaction of  $C_4F_9$ –I with 1-(trimethylsiloxy)cyclohexene as mentioned above (entry 1 in Table 1). This result would be attributed to the enhanced acidity of  $\alpha$ -hydrogen between ketone and  $R_f$  group, and this dehydrofluorination was suppressed in  $\alpha$ -C<sub>4</sub>F<sub>9</sub> ester (**10a**). This tendency becomes prominent by changing the functional group, and  $\alpha$ -C<sub>4</sub>F<sub>9</sub> thioester (**12a**) was obtained without dehydrofluorination.

Based on these results, we next tried to use the silyl enol ether derived from an aldehyde. An effective  $\alpha$ -fluoroalkylation of aldehydes has hardly ever reported, while most of them suffer from cross-coupling reactions with sp<sup>2</sup>-halides [11], radical reactions [12] or photochemical reaction [13]. The present transformation will become more useful from the above results, if the reactions would proceed with silyl enol ethers of aldehydes to give  $\alpha$ -R<sub>f</sub> aldehydes. As shown in Table 3, the increase of reaction rates was confirmed as expected, while the higher acidity of the  $\alpha$ hydrogen caused the dehydrofluorination of the products,  $\alpha$ -R<sub>f</sub>

# Table 2

Various  $\alpha$ -fluoroalkylated carbonyl compounds.

$$\begin{array}{c} \underset{\mathbf{2}}{\text{OTMS}} \\ \textbf{y} & \overbrace{\mathbf{2}}^{R^2} + \underset{\mathbf{1}}{R_f^{-X}} \\ \textbf{z} \end{array} \xrightarrow{\begin{array}{c} \text{RhCl}(\text{PPh}_3)_3 \\ \textbf{DME}, \ 0^\circ\text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{O} \\ \underset{\mathbf{E}t_2Zn \\ \textbf{DME}, \ 0^\circ\text{C} \end{array}}{} \begin{array}{c} \text{V} \\ \textbf{x} \\ \underset{\mathbf{1}}{\overset{R_f}{R_f}} \\ \textbf{x} \\$$

| Entry | Product                          |                                                                                                | Time (h) | Yield (%) <sup>a</sup> |
|-------|----------------------------------|------------------------------------------------------------------------------------------------|----------|------------------------|
| 1     | R <sub>f</sub>                   | C <sub>4</sub> F <sub>9</sub> ( <b>10a</b> )<br>C <sub>10</sub> F <sub>21</sub> ( <b>10b</b> ) | 3<br>7   | 44 <sup>b</sup><br>32  |
| 3     |                                  | $CF_2C_6F_5$ (10c)                                                                             | 5        | 44                     |
| 4     | <ul><li>✓ ,0, ,0</li></ul>       | CF <sub>2</sub> COOEt ( <b>10d</b> )                                                           | 3        | 66°                    |
| 5     | 2                                | C <sub>4</sub> F <sub>9</sub> ( <b>11a</b> )                                                   | 3        | 39                     |
| 6     | U<br>U                           | $C_{10}F_{21}$ ( <b>11b</b> )                                                                  | 3        | 27                     |
| 7     | Ph.N.R.                          | $CF_2C_6F_5$ ( <b>11c</b> )                                                                    | 2        | 29                     |
| 8     | $\uparrow$ $\land$               | CF <sub>2</sub> COOEt ( <b>11d</b> )                                                           | 3        | 42 <sup>c</sup>        |
| 9     | 0                                | C <sub>4</sub> F <sub>9</sub> ( <b>12a</b> )                                                   | 3        | 34                     |
| 10    | U<br>U                           | $C_{10}F_{21}$ ( <b>12b</b> )                                                                  | 5        | 21                     |
| 11    | Ph <sub>s</sub> , R <sub>f</sub> | $CF_2C_6F_5$ ( <b>12c</b> )                                                                    | 2        | 0                      |
| 12    | 3                                | $CF_2COOEt$ ( <b>12d</b> )                                                                     | 3        | 0 <sup>c</sup>         |

<sup>a</sup> Isolated yield.

<sup>b</sup> Dehydrofluorinated product (**13a**) was isolated in 14% as the by-product along with **10a**.

<sup>c</sup> BrCF<sub>2</sub>COOEt (1d) was used as the starting material.

#### Table 3

 $\alpha$ -Fluoroalkylation of aldehydes.

| OTMS                              | + P - Y                  | RhCl(PPh <sub>3</sub> ) <sub>3</sub><br>Et <sub>2</sub> Zn | O F                                                      |                                   |
|-----------------------------------|--------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|
| H C <sub>10</sub> H <sub>21</sub> | τ κ <sub>f</sub> -λ<br>1 | DME, 0°C                                                   | H Y R <sub>f</sub><br>14 C <sub>10</sub> H <sub>21</sub> | H C <sub>10</sub> H <sub>21</sub> |

| Entry | R <sub>f</sub> -X                | Temp. (°C) | Time (h) | Product | Yield (%) <sup>a</sup> |
|-------|----------------------------------|------------|----------|---------|------------------------|
| 1     | C <sub>4</sub> F <sub>9</sub> –I | 0          | 1        | 14a     | 51                     |
| 2     | $C_{10}F_{21}-I$                 | 0          | 1        | 14b     | 38                     |
| 3     | $C_6F_5-CF_2-I$                  | 0          | 2        | 14c     | 24                     |
| 4     | EtOOCCF <sub>2</sub> -Br         | 0          | 1        | 14d     | 0                      |

<sup>a</sup> Isolated yield.

aldehydes (**14**). Unfortunately, the yields were not improved owing to the less stability and the higher reactivity, but we could confirm the formation of  $\alpha$ -R<sub>f</sub> aldehydes (Table 3).

# 3. Conclusions

We obtained various  $\alpha$ -R<sub>f</sub> carbonyl compounds which have been difficult to synthesize, especially it is rare for the direct  $\alpha$ fluoroalkylation of thioesters and aldehydes. Most results relevant to this  $\alpha$ -fluoroalkylation supported the previous proposed mechanism which was mediated by a highly reactive alkylrhodium complex. Since the  $\alpha$ -fluoroalkylation reaction can be widely applicable to various silyl enol ethers of carbonyl compounds, we expect that the reaction will play an important role in medicinal and/or material fields.

#### 4. Experimental

## 4.1. General information

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on JNM-GX400 spectrometers. <sup>19</sup>F NMR spectra were recorded on Hitachi FT-NMR

R-90H and JEOL-ECA-600SN spectrometers. Chemical shifts of <sup>1</sup>H NMR and <sup>13</sup>C NMR are reported in ppm from tetramethylsilane (TMS) as an internal standard. Chemical shifts of <sup>19</sup>F NMR are reported in ppm from benzotrifluoride (BTF) as an internal standard. All data are reported as follows: chemical shifts, relative integration value, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m, multiplet), and coupling constants (Hz). Mass spectra were obtained on JEOL JMS-700T spectrometers. IR spectra were recorded on Hitachi 270-30 Infrared spectrophotometer. Melting points were measured on Yanagimoto micro melting point apparatus MP-S3 and uncorrected. Analytical gas-liquid chromatography (GLC) was carried out on Hitachi 263-50 gas chromatograph (column; 5% SE-30 3 mm × 2 m, carrier; N<sub>2</sub> at 30 mL/min). Peak areas were calculated on Shimadzu C-R5A Chromatopac.

The purity of products was certificated by <sup>1</sup>H NMR, and then HRMS was used as substitute for elemental analysis. <sup>19</sup>F NMR yields were calculated based on BTF as an internal standard. Dimethoxyethane (DME) was distilled from CaH<sub>2</sub> and stored over MS 4 Å. All commercially available reagents were used without further purification. All experiments were carried out under argon atmosphere unless otherwise noted.

#### 4.2. General procedure

To a solution of RhCl(PPh<sub>3</sub>)<sub>3</sub> (2 mol%) and ketene silyl acetal (**2**, 1.0 mmol) in DME (5 mL) was added R<sub>f</sub>–X (**1**, 1.5 mmol) at 0 °C. Then 1.0 M Et<sub>2</sub>Zn in hexane (1 mL, 1.0 mmol) was slowly added, and was stirred at the same temperature. The resulting mixture was quenched with 10% HCl, and extracted with AcOEt. The organic layer was washed with sat. NaCl and dried over MgSO<sub>4</sub>. The solvent was removed *in vacuo*, then benzotrifluoride (BTF) was added in the residue. The yield was calculated from the integration ratio of the product and BTF on <sup>19</sup>F NMR. After the calculation, the residue was purified by column chromatography to give the corresponding  $\alpha$ -fluoroalkylated carbonyl compound.

### 4.3. Spectroscopic data of $\alpha$ -R<sub>f</sub> ketones

#### 4.3.1. 2-Octafluorobutylidenecyclohexanone (5a); as the E-Z mixture

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.84–2.03 (4H, m), 2.56 (2H, t, J = 6.7 Hz), 2.62–2.70 (2H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -65.2 (1.6F, m), -64.5 (0.2F, m), -63.6 (0.4F, m), -58.1 (0.8F, m), -52.1 (1.6F, m), -51.9 (0.4F, m), -18.0 (0.6F, m), -17.9 (2.4F, m); MS *m/z*: 296 (M<sup>+</sup>); HRMS Calcd for C<sub>10</sub>H<sub>8</sub>OF<sub>8</sub>: 296.045 (M<sup>+</sup>), Found: 296.045; IR (neat) cm<sup>-1</sup>: 1730, 1680, 1356, 1302, 1188.

## 4.3.2. 2-Henicosafluorodecylcyclohexanone (4b)

Colorless crystals; M.p. 73.5–74.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.69– 2.09 (5H, m), 2.26 (1H, m), 2.49 (2H, m), 3.20 (1H, m); <sup>19</sup>F NMR (90 MHz, CDCl<sub>3</sub>)  $\delta$ : –63.8 (2F, m), –59.9 (2F, m), –59.1 (2F, m), –58.9 (8F, m), –57.2 (2F, m), –51.1 (1F, m), –49.4 (1F, m), –18.0 (3F, m); MS *m*/*z*: 616 (M<sup>+</sup>); HRMS Calcd for C<sub>16</sub>H<sub>9</sub>OF<sub>21</sub>: 616.032 (M<sup>+</sup>), Found: 616.031; IR (KBr) cm<sup>-1</sup>: 1724, 1216, 1154.

## 4.3.3. 2-Perfluorobenzylcyclohexanone (4c)

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.71–1.78 (2H, m), 1.91–2.12 (3H, m), 2.27–2.35 (1H, m), 2.39–2.48 (2H, m), 3.34 (1H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -98.5 (2F, m), -88.5 (1F, m), -76.7 (2F, m), -41.5 (1F, ddt, *J* = 36.2 Hz), -26.0 (1F, dt, *J* = 15.5 Hz); MS *m/z*: 314 (M<sup>+</sup>); HRMS Calcd for C<sub>13</sub>H<sub>9</sub>OF<sub>7</sub>: 314.054 (M<sup>+</sup>), Found: 314.055; IR (neat) cm<sup>-1</sup>: 1726, 1372, 1330, 1222, 1038.

#### 4.3.4. Ethyl 2,2-difluoro-2-(2-oxocyclohexyl)acetate (4d)

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.35 (3H, t, *J* = 7.2 Hz), 1.69 (2H, m), 1.86 (1H, m), 2.08 (2H, m), 2.35 (2H, m), 2.45 (1H, m), 3.33 (1H, m), 4.34 (2H, m); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 13.8, 23.9, 25.3 (m), 26.5, 41.6 (m), 54.4 (m), 62.7, 114.1 (m), 163.6 (m), 206.4 (m); <sup>19</sup>F NMR (90 MHz, CDCl<sub>3</sub>)  $\delta$ : -55.3 (1F, dd, *J* = 273.8, 19.4 Hz), -46.2 (1F, dd, *J* = 273.8, 7.6 Hz); MS *m/z*: 220 (M<sup>+</sup>); HRMS Calcd for C<sub>10</sub>H<sub>14</sub>O<sub>3</sub>F<sub>2</sub>: 220.091 (M<sup>+</sup>), Found: 220.090; IR (neat) cm<sup>-1</sup>: 1778, 1760, 1720, 1318, 1222, 1140.

#### 4.4. Spectroscopic data of $\alpha$ -R<sub>f</sub> esters

#### 4.4.1. 3-Perfluorobutylchroman-2-one (10a)

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 2.80–3.30 (2H, m), 3.62 (1H, m), 7.08–7.35 (5H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -63.3 (2F, m), -57.9 (2F, m), -50.1 (2F, m), -18.1 (3F, m); MS *m*/*z*: 366 (M<sup>+</sup>); HRMS Calcd for C<sub>13</sub>H<sub>7</sub>O<sub>2</sub>F<sub>9</sub>: 366.030 (M<sup>+</sup>), Found: 366.030; IR (neat) cm<sup>-1</sup>: 1784, 1360, 1236.

#### 4.4.2. 3-Perfluorodecylchroman-2-one (10b)

Colorless crystals; M.p. 118.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 3.31 (2H, d, J = 8.0 Hz), 3.62 (1H, m), 7.10–7.34 (4H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -63.3 (2F, m), -59.9 (2F, m), -59.1 (2F, m), -58.8 (8F, m), -57.5 (2F, m), -51.2 (1F, m), -48.6 (1F, m), -18.0 (3F, m); MS *m*/*z*: 666 (M<sup>+</sup>); HRMS Calcd for C<sub>19</sub>H<sub>7</sub>O<sub>2</sub>F<sub>21</sub>: 666.011 (M<sup>+</sup>), Found: 666.011; IR (KBr) cm<sup>-1</sup>: 1730, 1346, 1208, 1154, 1108.

#### 4.4.3. 3-Perfluorobenzylchroman-2-one (10c)

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 3.39 (2H, m), 3.73 (1H, m), 7.05–7.33 (4H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : –23.6 (1F, dt, *J* = 15.5 Hz), –43.4 (1F, ddt, *J* = 38.0 Hz), –76.6 to –76.7 (2F, m), –87.1 (1F, dt, *J* = 20.7 Hz), –97.8 to –97.9 (2F, m); MS *m/z*: 364 (M<sup>+</sup>); HRMS Calcd for C<sub>16</sub>H<sub>7</sub>O<sub>2</sub>F<sub>7</sub>: 364.033 (M<sup>+</sup>), Found: 364.033; IR (neat) cm<sup>-1</sup>: 1760, 1332, 1258, 1234, 1162, 1094.

### 4.4.4. Ethyl difluoro-(2-oxochroman-3-yl)acetate (10d)

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.38 (3H, t, *J* = 7.24 Hz), 3.21 (1H, dd, *J* = 6.2, 6.8 Hz), 3.32 (1H, t, *J* = 14.5 Hz), 3.74 (1H, m), 4.41 (2H, q, *J* = 7.1 Hz), 7.07–7.33 (4H, m); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 13.8, 22.6 (t, *J* = 4.4 Hz), 63.4, 116.8, 120.6, 125.1, 128.3, 128.6, 150.8, 162.6 (t, *J* = 30.0 Hz), 164.6, 164.7; <sup>19</sup>F NMR (90 MHz, CDCl<sub>3</sub>)  $\delta$ : -50.1 (2F, ddd, *J* = 19.4, 5.4, 4.6 Hz); MS *m/z*: 270 (M<sup>+</sup>); HRMS Calcd for C<sub>13</sub>H<sub>12</sub>O<sub>4</sub>F<sub>2</sub>: 270.071 (M<sup>+</sup>), Found: 270.071; IR (neat) cm<sup>-1</sup>: 1758, 1334, 1228, 1172, 1108.

#### 4.5. Spectroscopic data of $\alpha$ -R<sub>f</sub> amides

# 4.5.1. 3,3,4,4,5,5,6,6,6-Nonafluoro-N,2,2-trimethyl-N-phenylpropionamide (11a)

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.20 (6H, s), 3.25 (3H, s), 7.17–7.45 (5H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -63.3 (2F, m), -59.4 (2F, m), -54.7 (2F, m), -17.9 (3F, m); MS *m/z*: 395 (M<sup>+</sup>); HRMS Calcd for C<sub>15</sub>H<sub>14</sub>ONF<sub>9</sub>: 395.093 (M<sup>+</sup>), Found: 395.093; IR (neat) cm<sup>-1</sup>: 1650, 1596, 1494, 1480, 1236, 1124.

### 4.5.2. 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Henicosafluoro-N,2,2-trimethyl-N-phenyl-propionamide (11b)

Colorless crystals; M.p. 80.0–81.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.12 (6H, s), 3.25 (3H, s), 7.21–7.43 (5H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -63.3 (2F, m), -59.9 to -60.0 (2F, m), -59.1 (2F, m), -58.7 to -58.9 (8F, m), -53.7 (2F, m), -48.4 (2F, m), -18.0 (3F, m); MS *m/z*: 695 (M<sup>+</sup>); HRMS Calcd for C<sub>20</sub>H<sub>14</sub>ONF<sub>21</sub>: 695.074 (M<sup>+</sup>), Found: 695.074; IR (KBr) cm<sup>-1</sup>: 1656, 1592, 1238, 1143.

# 4.5.3. 2-Perfluorobenzyl-N,2,2-trimethyl-N-phenylpropionamide (11c)

Colorless crystals; M.p. 79.0–80.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.12 (6H, s), 3.21 (3H, s), 7.27–7.43 (5H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : –99.0 to –99.1 (2F, m), –88.5 (1F, m), –75.1 to –75.3 (2F, m), –33.3 (2F, t, *J* = 31.0 Hz); MS *m/z*: 393 (M<sup>+</sup>); HRMS Calcd for C<sub>18</sub>H<sub>14</sub>ONF<sub>7</sub>: 393.096 (M<sup>+</sup>), Found: 393.096; IR (KBr) cm<sup>-1</sup>: 1653, 1586, 1248, 1142.

# 4.5.4. Ethyl 2,2-difluoro-3,3-dimethyl-4-(N-methyl-N-phenyl)-4oxoacetate (11d)

Colorless crystals; M.p. 81.0–82.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.18 (6H, s), 1.39 (3H, t, *J* = 7.0 Hz), 3.21 (3H, s), 4.38 (2H, q, *J* = 7.0 Hz), 7.24–7.45 (5H, m); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 13.9, 21.5 (t, *J* = 5.2 Hz), 41.2, 52.6 (dd, *J* = 22.6, 23.2 Hz), 62.2, 116.2 (t, *J* = 255.5 Hz), 128.4, 128.8, 129.4, 143.2, 164.2 (t, *J* = 3.4 Hz), 172.5 (t, *J* = 3.3 Hz); <sup>19</sup>F NMR (90 MHz, CDCl<sub>3</sub>)  $\delta$ : –50.2 (2F, s); MS *m/z*: 299 (M<sup>+</sup>); HRMS Calcd for C<sub>15</sub>H<sub>19</sub>O<sub>3</sub>NF<sub>2</sub>: 299.133 (M<sup>+</sup>), Found: 299.133; IR (KBr) cm<sup>-1</sup>: 1754, 1652, 1226.

#### 4.6. Spectroscopic data of $\alpha$ -R<sub>f</sub> thioesters

# 4.6.1. S-phenyl 3,3,4,4,5,5,6,6,6-nonafluoro-2-methylhexanethioate (12a)

Colorless crystals; M.p. 41.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.53 (3H, d, J = 7.0 Hz), 3.56 (1H, m), 7.41–7.45 (5H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -63.2 (2F, m), -58.6 (2F, m), -52.2 (2F, m), -18.2 (3F, m); MS m/z: 384 (M<sup>+</sup>); HRMS Calcd for C<sub>13</sub>H<sub>9</sub>OF<sub>9</sub>S: 384.022 (M<sup>+</sup>), Found: 384.022; IR (KBr) cm<sup>-1</sup>: 1693, 1392, 1221.

# 4.6.2. S-phenyl 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12henicosafluoro-2-methyldodecanethioate (12b)

Colorless crystals; M.p. 68.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.53 (3H, d, J = 7.2 Hz), 3.56 (1H, m), 7.23–7.52 (5H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -63.3 (2F, m), -59.9 to -60.0 (2F, m), -59.2 (2F, m), -58.7 to -58.9 (8F, m), -55.0 (2F, m), -48.8 (2F, m), -18.0 (3F, m); MS m/z: 684 (M<sup>+</sup>); HRMS Calcd for C<sub>19</sub>H<sub>9</sub>OF<sub>21</sub>S: 684.004 (M<sup>+</sup>), Found: 684.004; IR (KBr) cm<sup>-1</sup>: 1696, 1394, 1238, 1138.

# 4.7. Spectroscopic data of $\alpha$ -R<sub>f</sub> aldehydes

4.7.1. 2-(1,2,2,3,3,4,4,4-Octafluorobutylidene)dodecanal (14a); as the E–Z mixture

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 0.89 (3H, t, *J* = 7.1 Hz), 1.27– 1.47 (16H, m), 2.30 (0.5H, m), 2.45 (1.5H, m), 9.98 (0.75H, m), 10.22 (0.25H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -64.7 to -64.4 (2F, m), -53.5 (0.2F, m), -49.5 to -49.4 (2F, m), -44.0 (0.8F, m), -17.7 (3F, m); MS *m/z*: 382 (M<sup>+</sup>); HRMS Calcd for C<sub>16</sub>H<sub>22</sub>OF<sub>8</sub>: 382.154 (M<sup>+</sup>), Found: 382.154; IR (neat) cm<sup>-1</sup>: 2924, 1694, 1228, 1122, 964, 736.

# 4.7.2. 2-(1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

#### Icosafluorodecylidene)dodecanal (14b); as the E-Z mixture

Colorless crystals; M.p. 46.0 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 0.88 (3H, t, J = 6.5 Hz), 1.27–1.44 (16H, m), 2.31 (0.3H, m), 2.45 (1.7H, m), 9.99 (0.85H, m), 10.22 (0.15H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : -63.4 to -63.3 (2F, m), -60.1 (2F, m), -59.9 (2F, m), -59.1--59.9 (8F, m), -48.4--48.3 (2F, m), -43.7--44.6 (1F, m), -18.0 (3F, t, J = 9.7 Hz); MS m/z: 682 (M<sup>+</sup>); HRMS Calcd for C<sub>22</sub>H<sub>22</sub>OF<sub>20</sub>: 682.135 (M<sup>+</sup>), Found: 682.135; IR (KBr) cm<sup>-1</sup>: 2932, 1694, 1221, 1184.

# 4.7.3. 2-(1-Fluoro-1-pentafluorophenyl)ethylidenedodecanal (14c); as the E–Z mixture

A colorless oil; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 0.88 (3H, t, *J* = 7.1 Hz), 1.21– 1.51 (16H, m), 2.41–2.45 (2H, m), 10.00 (0.6H, m), 10.22 (0.4H, m); <sup>19</sup>F NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ : –93.4 (2F, m), –84.1 (1F, m), –73.9 to –73.8 (2F, m), –16.9 to –16.8 (1F, m); MS *m/z*: 380 (M<sup>+</sup>); HRMS Calcd for C<sub>19</sub>H<sub>22</sub>OF<sub>6</sub>: 380.157 (M<sup>+</sup>), Found: 380.157; IR (neat) cm<sup>-1</sup>: 2928, 2860, 1694, 1652, 1500, 1186.

#### References

- (a) V.P. Kukhar', V.A. Soloshonok (Eds.), Fluorine-containing Amino Acids: Synthesis and Properties, John Wiley & Sons, Chichester, 1995;
  - (b) N.C. Yoder, K. Kumar, Chem. Soc. Rev. 31 (2002) 335-341;
  - (c) J.-P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine, John Wiley & Sons, New Jersey, 2008.
- [2] For the trifluoromethylation using an electrophilic trifluoromethylating reagents:
  (a) T. Umemoto, S. Ishihara, J. Am. Chem. Soc. 115 (1993) 2156–2164;
  (b) T. Umemoto, Chem. Rev. 96 (1996) 1757–1777 (and references therein);
  - (c) J.-A. Ma, D. Cahard, J. Org. Chem. 68 (2003) 8726–8729.
- [3] For the trifluoromethylation of silyl and germyl enolates of esters and ketones:
  (a) K. Miura, M. Taniguchi, K. Nozaki, K. Oshima, K. Utimoto, Tetrahedron Lett. 31 (1990) 6391–6394;
  (b) K. Miura, Y. Takeyama, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 64 (1991)
- 1542–1553. [4] For the trifluoromethylation of lithium enolate of imides:
- (a) K. Iseki, T. Nagai, Y. Kobayashi, Tetrahedron Lett. 34 (1993) 2169–2170;
- (b) K. Iseki, T. Nagai, Y. Kobayashi, Tetrahedron: Asymmetry 5 (1994) 961–974. [5] For the trifluoromethylation of enamines:
- (a) D. Cantacuzène, R. Dorme, Tetrahedron Lett. 25 (1975) 2031–2034;
  (b) D. Cantacuzène, C. Wakselman, R. Dorme, J. Chem. Soc., Perkin Trans. 1 (1977) 1365–1371;
  - (c) T. Kitazume, N. Ishikawa, J. Am. Chem. Soc. 107 (1985) 5186-5191;
- (d) C. Semisch, P. Margaretha, J. Fluorine Chem. 30 (1986) 471–475.
- [6] (a) J.E. Huheey, J. Phys. Chem. 69 (1965) 3284-3291;
- (b) M. Yoshida, N. Kamigata, J. Fluorine Chem. 49 (1990) 1-20.
- [7] (a) Y. Itoh, K. Mikami, Org. Lett. 7 (2005) 649-651;
  - (b) Y. Itoh, K. Mikami, Org. Lett. 7 (2005) 4883–4885;
  - (c) Y. Itoh, K. Mikami, Tetrahedron 62 (2006) 7199-7203;
- (d) K. Mikami, Y. Tomita, Y. Ichikawa, K. Amikura, Y. Itoh, Org. Lett. 8 (2006) 4671-4673;
- (e) Y. Itoh, K.N. Houk, K. Mikami, J. Org. Chem. 71 (2006) 8918-8925.
- [8] D.A. Nagib, M.E. Scott, D.W.C. MacMillan, J. Am. Chem. Soc. 131 (2009) 10875– 10877.
- [9] (a) K. Sato, T. Yuki, A. Tarui, M. Omote, I. Kumadaki, A. Ando, Tetrahedron Lett. 49 (2008) 3558–3561;
- (b) K. Sato, T. Yuki, R. Yamaguchi, T. Hamano, A. Tarui, M. Omote, I. Kumadaki, A. Ando, J. Org. Chem. 74 (2009) 3815–3819.
- [10] K. Sato, M. Higashinagata, T. Yuki, A. Tarui, M. Omote, I. Kumadaki, A. Ando, J. Fluorine Chem. 129 (2008) 51–55.
- [11] (a) J.M. Paratian, E. Labbe, S. Sibille, J.J. Perichon, Organomet. Chem. 489 (1995) 137–143;
  - (b) N. Kamigata, K. Udodaira, T. Shimizu, Phosphorus Sulfur Silicon Relat. Elem. 129 (1997) 155–168;
  - (c) I. Nowak, M.J. Robins, J. Org. Chem. 72 (2007) 2678-2681.
- [12] S. Tews, R. Miethchen, H. Reinke, Synthesis (2003) 707–716;
   (b) A. Wegert, R. Miethchen, M. Hein, H. Reinke, Synthesis (2005) 1850–1858.
- [13] M. Mitani, H. Sakata, H. Tabei, Bull. Chem. Soc. Jpn. 75 (2002) 1807–1814.